






described inconsistencies (3). Accordingly, pro-
longed fasting of mice can induce autophagy in
b cells (26). Our model could also explain the
regulation of autophagy despite constitutively
high adenosine monophosphate–activated pro-
tein kinase activity in b cells (27).
Our data show that triggering autophagy re-

sults in increased secretion of insulin. Although
this should be avoided during fasting, it may be
beneficial when insulin demands are high; for
example, after a meal or in diabetes (28). The
positive correlation between autophagy and in-
sulin secretion may suggest an involvement of
autophagy in postprandial insulin release, prob-

ably going beyond the widely established house-
keeping role of autophagy.
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Fig. 4. PKD controls SINGD. (A) Immunoblot of proinsulin using lysates of INS1
cells treated with CID755673 for the indicated times. GAPDH served as a loading
control. (B) EM of Golgi areas in nonsilenced (NS) and PKD1-depleted (shPKD1)
INS1 cells. Yellow asterisks indicate GCLs. ROI are indicated with dashed squares.
(C) IF of mTOR and Lamp1 in nonsilenced and PKD1-depleted INS1 cells. White
arrowheads indicate colocalization of mTOR with Lamp1. Nuclei were stained with

DAPI. (D) Immunoblot of indicated proteins using lysates of nonsilenced and PKD1-
depleted INS1 cells.GAPDH served as a loading control. (E) (Top) EM of Golgi areas
of fasted b cells in primary islets of p38d+/+ and p38d−/− mice. Yellow asterisks
indicate GCLs. (Bottom) EM of cytoplasm of fasted b cells in primary islets of
p38d+/+ and p38d−/− mice. The yellow asterisk indicates an autophagosome.
(F) Model linking SINGD, secretion, and autophagy. PM, plasma membrane.
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KINASE DYNAMICS

Using ancient protein kinases to
unravel a modern cancer
drug’s mechanism
C. Wilson,1* R. V. Agafonov,1* M. Hoemberger,1 S. Kutter,1 A. Zorba,1 J. Halpin,1

V. Buosi,1 R. Otten,1 D. Waterman,1 D. L. Theobald,2 D. Kern1†

Macromolecular function is rooted in energy landscapes, where sequence determines not a
single structure but an ensemble of conformations. Hence, evolution modifies a protein’s
function by altering its energy landscape. Here, we recreate the evolutionary pathway between
two modern human oncogenes, Src and Abl, by reconstructing their common ancestors. Our
evolutionary reconstruction combined with x-ray structures of the common ancestor and
pre–steady-state kinetics reveals a detailed atomistic mechanism for selectivity of the
successful cancer drug Gleevec. Gleevec affinity is gained during the evolutionary trajectory
toward Abl and lost toward Src, primarily by shifting an induced-fit equilibrium that is also
disrupted in the clinical T315I resistancemutation.This work reveals themechanism of Gleevec
specificity while offering insights into how energy landscapes evolve.

T
he evolution of protein kinases is a key
event in the origin of multicellularity (1),
which enabled the development of more
complex signaling cascades essential for
the evolution of higher organisms. The

key role of protein kinases in the cell cycle has
placed them at the center of cancer drug re-
search. Despite an explosion in diversity in the
kinome (2), the catalytic kinase domains have
maintained nearly identical structures (2–5). It
is therefore surprising that the clinically suc-
cessful cancer drug Gleevec has such strong
selectivity toward Abl versus other tyrosine ki-
nases, including the closely related Src. This is
puzzling because the Gleevec-bound structures
of Abl and Src are nearly identical, including the
N- and C-terminal lobes and the drug-binding
pocket (Fig. 1A) (3). Extensive work led to a fre-
quently cited but controversial model where
Gleevec selectivity is rooted in a pre-existing equi-
librium between two alternative conformations
of the DFG-motif (for Asp-Phe-Gly), a conserved

segment of the activation loop (3, 6–12). A num-
ber of x-ray structures have revealed the sam-
pling of a Gleevec-binding–competent DFG-out
position and a binding-incompetent DFG-in
position in free kinases (Figs. 1A and 2A). Re-
cently reported data rule out the predominant
role of the DFG-in/out equilibrium (conforma-
tional selection) in Gleevec selectivity. It led to a
different binding scheme (Scheme 1) that ac-
counts for the 3000-fold difference in Gleevec
affinity between Src and Abl (11) due to a global
conformational change after drug binding (in-
duced fit, Scheme 1).
However, the molecular mechanism of this se-

lectivity remains unknown. Based on x-ray crys-
tal structures, specific point mutations have been
made in attempts to convert Abl to Src-like spec-
ificity and vice versa. Despite two decades of
efforts, such sequence swaps in modern kinases
have failed to illuminate the atomistic determi-
nants of selectivity (3, 6). The differences be-
tween Src, Abl, and other homologous kinases
have evolved over a billion years from their com-
mon ancestor—not via residue swaps from one
modern kinase to another. Sequence-swap exper-
iments using modern enzymes have a funda-
mental shortcoming by neglecting epistasis (the
effect of the surrounding amino acid background)

(13). However, evolution has already navigated
the complex epistatic protein space by producing
functional proteins at each stage despite large
numbers of accumulated mutations. We there-
fore examined the evolution of Src and Abl along
their phylogenetic branches using ancestral re-
construction to understand differences not only
in their equilibrium structures but also in their
energy landscapes.
Ancestral reconstruction has provided a way

to achieve mechanistic insight into protein func-
tion (14–19). Here, we elucidate the basis of mod-
ern kinase specificity toward Gleevec with atomic
resolution by recapitulating the evolution of the
Src and Abl catalytic domain from their last com-
mon ancestor. Analysis of the ancestral kinases
allows us to track the evolution of the protein
energy landscape (20, 21). We define “energy land-
scape” as a set of free energy and kinetic param-
eters linking kinetically distinct states that are
relevant to biological processes.
Seventy-six modern-day sequences spanning

the cytosolic tyrosine kinase family (Src/Abl/Tec
families) were used in a Bayesian phylogenetic
analysis with receptor tyrosine kinases as the
out-group (Fig. 1B). Because the quality of the an-
cestral reconstruction strongly depends on the
alignment, we estimated the tree and alignments
simultaneously. The most probable sequences
were inferred for four key ancestral proteins
between modern Src and Abl and their last com-
mon ancestor (Fig. 1B and figs. S1 and S2), and
their corresponding proteins were expressed,
purified, and characterized.
We denote the reconstructed protein corre-

sponding to the last common ancestor of Src and
Abl as ANC-AS. Similarly, on the lineage leading
from ANC-AS to modern Abl, ANC-A1 represents
the common ancestor between humans and co-
lonial choanoflagellates, andANC-A2 corresponds
to the common ancestor between humans and
Caenorhabditis elegans. On the lineage leading to
modern Src, ANC-S1 is the last common ancestor
between humans and colonial choanoflagellates/
sponges. Despite the fact that ANC-AS differs by
96 residues from any modern cytosolic tyrosine
kinase, all ancestral kinases reconstructed here
are fully active and thermostable (Fig. 1C and
fig. S3). We evaluated the specificity of Gleevec
toward the ancestral kinases by measuring inhi-
bition (Fig. 1D) and dissociation constants (fig. S4).
The inhibition ofANC-AS is intermediate between
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 cellsβInsulin secretory granules control autophagy in pancreatic 
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strategy of choice in beta cells to adapt to starvation.
controls this granule degradation in response to nutrient availability. Thus, unlike most other cells, autophagy is not the 
a process by which cells ''eat'' their own constituents. Protein kinase D, a major regulator of insulin granule biogenesis,

−−nutrient sensor mTOR is recruited to these lysosomes, leading to its local activation and the suppression of autophagy
 granules through their fusion with lysosomes, the cell's garbage disposal units (see the Perspective by Rutter). The

 found that starvation of beta cells induced selective degradation of newly formed insulin et al.depletion. Goginashvili 
Pancreatic beta cells, the source of insulin in response to food, employ an unusual mechanism to adapt to nutrient

Too hungry to eat, too hungry not to eat
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