Prof. Dr. Fred Hamprecht
Heidelberg Collaboratory for Image Processing (HCI)
Interdisciplinary Center for Scientific Computing (IWR) and Department of Physics and Astronomy
Heidelberg University
69120 Heidelberg, Germany
Phone: +49 6221-54 14803
E-Mail
FIELDS OF INTEREST
Machine learning (active, weakly supervised, structured) for automated image analysis, Bioimage Analysis
AWARDS & HONORS
2016, 2018, 2019 | ISBI 2012, SNDEMI3D and CREMI connectomics segmentation challenges: Top of leaderboard |
2015 | 40 Leading Scientists under 40 (“Capital” Magazine) |
2014-2015 | Weston Visiting Professor in the Department of Applied Mathematics and Computer Science at the Weizmann Institute for Science and Technology, Rehovot |
2014 | MICCAI Brain Tumor Segmentation Challenge (BraTS 2014): first prize (with J. Kleesiek, G. Urban et al.) |
2013 | DAGM 2013 award (jointly with C. Strähle, U. Köthe) |
2012 | Machine Learning in Medical Imaging MLMI 2012 best paper award (jointly with X. Lou, L. Fiaschi, U. Köthe) |
2008 | DAGM 2008 award (jointly with B. Andres, U. Köthe, M. Helmstädter, W. Denk) |
2007 | Sonderpreis IT & LifeScience: bwcon 2007 (jointly with B. H. Menze, B. M. Kelm, C. Zechmann) |
. | . |
|
|||||||||||||||||||||||||
|
|||||||||||||||||
Wolf, S, Bailoni, A, Pape, C, Rahaman, N, Kreshuk, A, Köthe, U and Hamprecht, FA (2020). The Mutex Watershed and its Objective: Efficient, Parameter-Free Graph Partitioning. IEEE Transactions on pattern analysis and machine intelligence.
Berg S, Kutra D, Kroeger T, Straehle CN, Kausler BX, Haubold C, Schiegg M, Ales J, Beier T, Rudy M, Eren K, Cervantes JI, Xu B, Beuttenmueller F, Wolny A, Zhang C, Koethe U, Hamprecht FA and Kreshuk A. 2019. Ilastik: interactive machine learning for (bio) image analysis. Nature Methods, 16(12), pp.1226-1232
Draxler, F, Veschgini, K, Salmhofer, M and Hamprecht, F (2018), July. Essentially no barriers in neural network energy landscape. In International conference on machine learning (pp. 1309-1318).
Weiler, M., Hamprecht, FA and Storath, M (2018). Learning steerable filters for rotation equivariant cnns. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 849-858).
Beier, T, Pape, C, Rahaman, N, Prange, T, Berg, S, Bock, DD, Cardona, A, Knott, GW, Plaza, SM, Scheffer, LK, Koethe, U, Kreshuk, A, Hamprecht, FA (2017). Multicut brings automated neurite segmentation closer to human performance. Nature Methods, 14(2), pp.101-102.
Kappes J, Andres B, Hamprecht FA, Schnörr C, Nowozin S, Batra D, Kim S, Kausler BX, Kröger T, Lellmann J, Komodakis N, Savchynskyy B, Rother C (2015). A comparative study of modern inference techniques for discrete energy minimization problems. Intern J Computer Vision. 1-30
Schiegg M, Hanslovsky P, Haubold C, Köthe U, Hufnagel L, Hamprecht FA (2015). Graphical model for joint segmentation and tracking of multiple dividing cells. Bioinformatics. 31(6):948-56
Andres B, Kröger T, Briggman L, Denk W, Korogod N, Knott G, Köthe U, Hamprecht FA (2012). Globally optimal closed-surface segmentation for connectomics. ECCV. 778-791
Lou X, Hamprecht FA (2011). Structured learning for cell tracking. NIPS. 1296-1304.
Hamprecht FA, Cohen AJ, Tozer DJ Handy NC (1998). Development and assessment of new exchange-correlation functionals. The J Chem Physics. 109(15):6264-6271
Click here for further publications.